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The physics of the tokamak edge is very complicated, and the scaling of the H-mode
transport barrier pedestal has significant uncertainties. Evidence from the largest toka-
maks appears to support a model in which the H-mode pedestal width scales linearly
with the poloidal gyroradius and the gradient scales with ideal MHD ballooning limits.
However, there appears to be significant variability in the data from different tokamaks,
including observations on DIII-D that indicate a regime where the pedestal is in second
stability and the width is independent of poloidal gyroradius, which would give a more
favorable scaling to reactor scales. An important question is the role of the bootstrap
current in the pedestal, and another is how far can the improvements in edge stability
be pushed with higher triangularity and elongation. Even with the more pessimistic
model, where the pedestal width is proportional to the poloidal gyroradius, the results
presented here suggest that pedestal temperatures, and thus the fusion performance,
may be significantly improved by designs with stronger plasma shaping (higher triangu-
larity and elongation), moderate density peaking, and higher magnetic field (and thus
reduced size), such as in ARIES-RS, FIRE, and some of the new ITER-RC designs.

I. THE SENSITIVITY OF FUSION PERFORMANCE TO TRANSPORT

It is well known that the fusion gain Q is a sensitive function of the confinement time τE , particularly
near ignition. Making standard energy balance assumptions, P = Pα + Paux = 3nTV/τE , with the
alpha power Pα ∝ n2T 2, ignoring bremsstrahlung, and assuming fixed fuel dilution, leads to the result
Q = 5/[(nTτE)∞/(nTτE)−1], where (nTτE)∞ is the value of nTτE at which ignition occurs. Normalizing
τE to a Goldston-like scaling, τE ∝ H/P 1/2 leads to Q = 5/(K2/H2 − 1), where K is a coefficient that
depends on the size and shape etc. of the device. Just a 30% drop in the confinement multiplier
H can reduce Q from ignition (Q = ∞) to Q = 5, and a 50% drop (such as if an H-mode is not
achieved) would yield Q = 1.7. Thus it is important to try to understand and reduce the uncertainties
in τE , so that the amount of design margin that is needed in a particular experiment to study high
Q is reduced. Conversely though, relatively moderate improvements in the confinement time can lead
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to large increases in the fusion power, which may allow one to reduce the size and cost of a fusion
power plant significantly (assuming that corresponding improvements in the MHD beta limits and the
engineering heat load constraints can be achieved). Such possibilities are being actively explored in
advanced tokamak experiments in the U.S. and elsewhere. [A more revolutionary approach that might
further improve tokamak and other power plant concepts is the use of liquid walls. This was discussed
at Snowmass by Kotschenreuther, Zakharov, Woolley, and others, and won’t be discussed further here.]

Because of these issues, the BPX design team caried out a careful study of the ignition margin and
the sensitivity of that design to uncertainties in transport1. One of the main concerns raised about the
original ITER-EDA design in 1995-1997 was that the uncertainties in extrapolating the global H-mode
database were larger than were being assumed2,3. There were also concerns that confinement might
be lower than the original extrapolations because of the difficulty of achieving at large scales some of
the factors that are often correlated with improved confinement in present devices. These include high
Ti/Te, density peaking, high rotational shear, dilution by beams and impurities, and operating away
from limits in the Greenwald density, beta, and the H-mode power threshold. The FESAC 1997 report2,
and in particular its physics basis appendix, contains a detailed discussion of these and other technical
concerns. Of course the uncertainties go in both directions, and the original ITER-EDA design may have
worked just fine. Since the time of the FESAC 1997 report, there has been progress in understanding
some of these issues better, and the statistical conditioning of the global database has improved with
the addition of new data, though there are still systematic variations between tokamaks and between
different parameter regimes in the database that need further study, and significant uncertainties remain.

In this paper we will focus on a related transport issue, that of the scaling of the edge pedestal temper-
ature in the H-mode transport barrier. Central temperature profiles and fusion performance are often
empirically correlated with edge conditions and high edge temperatures (or pedestal temperatures in
the case of H-modes). There is a range of transport models presently under study with differing degrees
of stiffness, or sensitivity to the edge boundary conditions (see Ref.[4] and references therein by Waltz,
Kinsey, Bateman and others). Gyrokinetic particle simulations have found a lower χ than the original
gyrofluid simulations (the discrepancy is reduced by recent modifications of the gyrofluid closures to
improve the treatment of neoclassical flows). Modifying the IFS-PPPL transport model to approxi-
mate the lower gyrokinetic χ still gives predictions that are fairly sensitive to the assumed pedestal
temperature and/or the achievable density, though there are a number of uncertainties that need fur-
ther investigation4. But the main point of this paper is to explore potential directions for significantly
increasing the pedestal temperature, which is favorable to varying degrees in all transport models.

II. EMPIRICAL AND THEORETICAL PEDESTAL SCALINGS.

A standard picture of the H-mode that has developed over the last decade is in terms of ExB shear
suppression of turbulence, (building on the work of Ref.[5] and many others, see the review by Burrell6).
Kotschenreuther and Dorland7,3 used this “conventional-wisdom” picture to develop a scaling for the
H-mode pedestal along the following lines (see Fig. 1). [Perkins et.al.8 independently derived a similar
scaling at the same conference, and used it as part of a possible explanation of the Greenwald density
limit. Actually, the essential features of this scaling, that the width is proportional to the poloidal
gyroradius and the gradient is set by ideal MHD, appeared first in experimental papers. See Fig. 1(b) of
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Ref.[9], and other papers cited below.] Turbulence is assumed to be suppressed where the ExB shearing
rate ∂(cEr/B)/∂r (using a simple circular form) is larger than the linear growth rate γ ∝ ω∗p, with the
maximum γ = Gvt/Lp, where G depends on various dimensionless parameters. Assuming radial force
balance neglecting neoclassical flows, ∂p/∂r ∼ enEr , this gives the requirement
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Assuming ∂/∂r ∼ 1/∆, and Lp ∼ ∆, this gives the pedestal width ∆ ∼ ρ/G. Assuming that the
maximum pressure gradient in this pedestal region is given by the ideal MHD ballooning limit, α =
Rq2∂β/∂r = α(ŝ, κ, δ, . . .) (where the maximum normalized pressure gradient α depends on various
dimensionless factors), then β at the top of the pedestal is given by

βped = ∆∂β/∂r ≈ ρα/(GRq2).

This can then be solved to find the pedestal temperature Tped as a function of the pedestal density nped

and other parameters.

∆

r

pedβ     ∼ ∆  β/d dr
β

FIG. 1. Conceptual picture of an ELMy H-mode plasma. The turbulence is suppressed in an edge boundary
layer of width ∆. If a scaling for the maximum pressure gradient dβ/dr is given, then βped at the top of the
pedestal can calculated.

A number of papers by the JT-60U team9–12 (some of which predated and motivated the scaling
papers7,3,8) and by the JET team13, provide experimental evidence that (1) the width of the H-mode

pedestal scales with the banana width, ∆ ∝
√

r/Rρθ (consistent with the above scalings with a par-

ticular choice for G), and (2) the gradient in the H-mode pedestal region scales with the ideal MHD
ballooning limit. [Because the pedestal width is relatively narrow, it can be difficult to accurately mea-
sure the width ∆ and the gradient ∂β/∂r separately. But what matters most to provide a boundary
condition for core transport models is the pedestal height βped = ∆∂β/∂r, which is easier to measure.
For example, Ref.[13] focuses on the scaling of the pedestal height βped, which it finds is consistent with
these combined assumptions for the pedestal width and the pedestal gradient.]
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Increased plasma shaping has a favorable effect on edge MHD pressure limits and H-mode perfor-
mance11,12. The Troyon beta limit can be written as

βTroyon = CT
I

aB
= CT

5a

q95R

[1 + κ2(1 + 2δ2 − 1.2δ3]

2

(1.17− 0.65a/R)

(1− (a/R)2)2
≡ CT

5a

q95R
Uq (2)

(using a version of the Uckan formula14 relating q to current, field, and shape), which shows how β
improves with elongation κ and triangularity δ (κ and δ evaluated at the 95% flux surface) at fixed q. If
the global volume averaged β is this sensitive to the triangularity, which is large only near the plasma
edge and falls rapidly towards the magnetic axis, then the local pressure gradient is probably much more
sensitive to the triangularity. A rough fit to the empirical triangularity dependence found in Refs.[11,12]
gives α ∝ [1 + κ2

x(1 + 10δ2
x)]. In this paper we will use a slightly weaker scaling α ∝ [1 + κ2(1 + 10δ2)],

(κ ≡ κ95 ≈ 0.914κx and δ ≡ δ95 ≈ 0.85δx typically).

Combining this expression for α with the above scaling of the pedestal width proportional to banana

width, which we roughly approximate for general geometry as ∆ ∝ √ερθ ∝ ρq
√

R/r/κ (we are measuring
the width at the outer midplane, and the factor of κ very roughly accounts for the increase in the local
Bθ with elongation at fixed q), gives

Tped = C0

(
nGr

nped

)2 [
1 + κ2(1 + 10δ2)

1 + κ2(1 + 2δ2 − 1.2δ3)

(1− (a/R)2)2

(1.17− 0.65a/R)

]2
AiR

κ2a
(3)

where nGr = Ip/(πa2)1020/m3 is the Greenwald density, with plasma current Ip in MA and minor radius
a in m, nped is the pedestal density, κ and δ are the elongation and triangularity, Ai is the average
hydrogenic ion mass, and R is the major radius. C0 is a constant we will determine by normalizing
to a JET case15 (the first line of Table I). [A more accurate approximation to the general geometry
∆ of Ref.[10], which uses B̄θ =

∫
dlpBθ/

∫
dlp in the definition of ρθ, results in multiplying Eq. (3)

by (1 + κ)2/(4U2
q κ), where Uq is defined in Eq. (2). The results are intermediate between the third

and second-from-last columns of Table I.] Clearly a number of rough analytic approximations were
made in deriving this scaling, and more detailed numerical calculations and comparisons with existing
experiments need to be done.

As a check on Eq. (3), one can scale from another JET paper. Eq. 5 from Ref.[13] incorporates the scaling
for the pedestal height into an offset-nonlinear form for the confinement time, τE = τE,core + Wped/P .
This can be used to work out a scaling for the pedestal temperature, and the result is

Tped =

(
nGr

nped

)2
Ai

2κ

(
3a

R

)2

0.22 keV

This is similar to Eq. (3), but lacks the shape scalings because Eq. 5 from Ref.[13] was based on plasmas
of a fixed shape (approximately like the ITER-96 design), and was not intended to be extrapolated to
other shapes. For this standard shape, it extrapolates to a pedestal temperature for the ITER-96 design
of about 0.12 keV, about 40% lower than the result in Table I, which uses Eq. (3) and is extrapolating
from a different JET case. More work is needed to understand the scatter in the data.

Other theoretical models of the pedestal have also been proposed. A model based on peeling instabilities18

predicts ∆ ∝ ρ2/3R1/3, a bit weaker than the above result ∆ ∝ ρ. One can also get this scaling if the
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microinstabilities of interest are driven by bad curvature, so the linear growth rate γ ∼ √ω∗pωd, and the

max γ ∼ vt/
√

∆R. Following similar steps as in Eq. (1), this leads to a pedestal width ∆ ∝ ρ2/3R1/3.
Instead of using the fastest growing mode, if one assumes that ExB suppression of low-k modes is relevant
(low-k modes are slower growing but may have large mixing length transport estimates), and that the
lowest k that needs to be considered is such that the local growth rate γ ∼ vt/(qR), the connection rate
to the good curvature side, then the pedestal width scaling is ∆ ∝ √

ρRq. This gives an even more
optimistic scaling, and is also shown in Table I. In the simulations by Waltz et.al.19, it was better to
use the fastest growing mode in the shearing rate criterion, so the ∆ ∝ ρ or ∆ ∝ ρ2/3R1/3 assumptions
are probably better. [∆ ∝ ρ2/3R1/3 would give predictions intermediate between the last column and
third-from last column of Table I.] Edge turbulence is very complicated, but detailed nonlinear edge
simulations, such as being done by Scott, et.al. at Garching, Drake et.al. at the Univ. of Maryland, and
others, are making rapid progress and may soon give a firmer basis for choosing the right scaling.

R a B Ip nped
nped

nGr

nped

〈n〉 κ95 δ95 Tped Tped Tped

m m T MA 1020/m3 keV keV keV
if ∆ ∝ ρθ

√
ε if 5δ2 if ∆ ∝ √Rqρ

JET-norm 2.92 0.91 2.35 2.55 0.4 0.40 ∼ 1 1.61 .17 2.1 2.1 2.1
ITER-96 8.14 2.80 5.68 21.0 1.3 1.52 1 1.60 .24 0.20∗ 0.18∗ 1.5∗

lower nped 8.14 2.80 5.68 21.0 0.6 0.70 .70 1.60 .24 0.94∗ 0.83∗ 4.2∗

ITER-HAM 6.30 1.81 6.58 13.0 0.86 0.68 .8 1.58 .26 1.4 1.2 4.5
ITER-LAM 6.45 2.33 4.25 17.0 0.64 0.64 .8 1.70 .43 2.0 1.2 5.5
Aries-RS 5.52 1.38 7.98 11.3 1.4 0.74 .67 1.70 .50 3.4 1.9 7.7
FIRE 2.0 0.53 10.0 6.44 3.6 0.48 .80 1.77 .40 4.8 3.0 6.7

∗ should add (nT )sol/nped which could be as high as ∼ 0.5 keV.

Table I. Extrapolation of pedestal scalings from a JET discharge to various proposed devices. The
third from last column uses Eq. (3), the scaling favored in papers from the two largest tokamaks,
which assumes the pedestal width ∆ ∝ ρθ

√
ε with the gradient set by ideal MHD. The next to last

column uses a modified version of Eq. (3), with the 10δ2 term in α reduced to 5δ2. The last column
uses the more optimistic scaling ∆ ∝ √Rqρ (and the full 10δ2 term in α). While there is significant
variation between the models, they all predict that the pedestal temperature can be significantly
improved by increasing the triangularity, elongation, and field (at fixed q, these also reduce the size
and increase the Greenwald density) and by assuming that a modest amount of density peaking is
achievable. [Some of the designs in Table I are evolving, so the parameters are approximate.]

While the results cited above from the two largest tokamaks support this model where the pedestal
height is proportional to a banana width times the ideal MHD gradient, there are results from other
tokamaks that appear to give contradictory evidence. Some of the initial JET papers found scalings of
Tped vs. nped that were weaker than Eq. (3), more consistent with ∆ ∝ ρ2/3−1/2. Some of the earlier

DIII-D papers said it was hard to distinguish between ∆ ∝ ρ
2/3
θ and ∆ ∝ β

1/2
pol ρ

0
θ. But later experiments

with a pumped divertor were able to break the correlation between nped and Ip, and found that the

width scales with Rβ
1/2
pol , and the gradient exceeds the ideal MHD beta limit. Their analysis16,17 finds

that because of the strong gradients in the pedestal, the bootstrap current can be large enough to lower
the magnetic shear enough to get below the “nose” in the ŝ−α diagram and get into the second stability
regime. This is an exciting possibility, since ∆ ∝ R gives a much more favorable scaling to large reactors,
so it would seem important to reproduce this result on larger tokamaks.
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A recent paper by Sugihara et.al20 analyzes results from multiple tokamaks. They show results from
several tokamaks that individually are consistent with a linear ∆ ∝ ρ scaling (at the ideal MHD gradient),
but the different tokamaks have different coefficients and do not overlay when plotted together. In passing
they mention that this may be evidence of some size scaling, but then they go on to give what we believe
are more likely explanations. For example, the JT-60U data in their Fig. 2 is from the end of the
ELM-free period, while the JET data in Fig. 2 is during ELMs, and JT-60U has reported that the
pedestal width increases by a factor of 2-3 in the ELMy phase, which would bring it into line with the
JET data. The C-MOD data is the lowest in their Fig. 2, but C-MOD does not see regular ELMs. They
see a very interesting type of H-mode they call EDA (Enhanced Dα), and the physics that determines
the pedestal in EDA could easily be significantly different than in ELMy H-modes. Sugihara et.al. also
point out that the edge pressure gradient is sensitive to shape, and that detailed shape data was not yet
available for all of their data.

Sugihara et. al. also make an interesting suggestion about the possible importance of the bootstrap
current in the pedestal region, building on the DIII-D analysis16,17 mentioned above. Increasing the
bootstrap current causes the pedestal magnetic shear to drop, which in the first stability regime will
be unfavorable and reduce the beta limit. [If the bootstrap current can be made large enough and
the shear small enough then one can get into second stability as DIII-D did.] Because the bootstrap
current depends on collisionality, this can introduce hidden collisionality dependence into the β limit
that should be used in a pedestal model. This might explain why some data sets from JET (see Fig.3
of Ref.[20]) see a scaling weaker than the Tped ∝ 1/n2

ped predicted by ∆ ∝ ρ and α fixed (because the
bootstrap current is changing as collisionality changes), while other JET data sets (see Ref.[13] and Figs.
1 and 2 of Ref.[20]) are consistent with ∆ ∝ ρ and α fixed (if they are from dimensionless scaling scans
where β and ν∗ are held fixed during the scan). If so, the main assumptions of ∆ ∝ ρ and ideal MHD
pressure limits used in earlier papers would still hold, but including the effect of bootstrap currents on
the MHD beta limit would be a useful generalization. [Earlier scaling papers tended to use the standard
dimensionless scaling framework where ν∗, ŝ, β, etc., and thus the bootstrap current fraction, are held
fixed (since present experiments can achieve reactor values of these) to focus on the ρ∗ scaling.] The
bootstrap current needs to be included in future analysis to know quantitatively how important it is.

III. DISCUSSION

In summary, some of the new designs under consideration may be able to achieve significantly higher
pedestal temperatures, which would be favorable for fusion performance. This is summarized in Table
I and Eq. (3), which show that, even with the relatively pessimistic ∆ ∝ ρ scaling, it may be possible
to achieve relatively high pedestal temperatures by going to high field, smaller size, stronger plasma
shaping (higher elongation and triangularity), and moderate density peaking. Note that nGr ∝ Ip/a

2 ∝
B/(Rq)[1 + κ2(1 + 2δ2)] (approximately), so raising B and reducing the size is very favorable.

To see the potential favorable impact of higher pedestal temperatures on fusion performance, see Ref.[4]
(and references therein) for plots of Q vs. Tped from various transport models. Such Q vs. Tped plots
should be done for the specific new designs under consideration in Table I, but these new designs are
higher elongation and triangularity, and more work on the core transport models needs to be carried out
to be confident of their scalings in those regimes.
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More work is needed to be more confident of these pedestal scalings, to understand how far the favorable
influence of triangularity and elongation can be pushed, and to understand the role of the bootstrap
current. Another important issue is whether moderate density peaking can be achieved. Note that
a large value of central over volume-averaged density is not needed, we just need to reduce the edge
pedestal density relative to the volume-averaged density, which might be achievable with even shallow
pellet injection, though this also depends on the particle transport in the edge/pedestal region. There
is also a limit on how low the density can be at the last closed field line for divertor operation. The
preferred design developed over the last few years for ITER involves a radiative divertor that appears
to be able to work with significantly lower densities than some of the earlier designs.

One caveat is that the increase in the pedestal temperature is correlated with an increase of energy
per ELM dumped onto the divertor plates17. It would useful to study possible methods of inducing
more frequent ELMs (via pellets, etc.) or some other ELM control technique that might avoid reducing
pedestal temperature. The C-MOD EDA mode may have advantages in this regard. Liquid protection
on the divertor plates could also help.
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